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A ~ENERALI~TION OF THE CANONICAL FORM OF POINCAR~~S EQUATIONS* 

L.M. MARKHASHOV 

A class of non-linear reversible replacements of canonical momenta is 
described, which reduces the Hamiltonian system to a form which differs 
only slightly from Poincar&'s equations /l/ in canonical form, obtained 
by Chetayev /2/. The difference is solely the fact that the components 
of the operators which form the right-hand side of the equations of motion 
may depend on new variables (the Chetayev variables). The usual canonical 
form of the equations is obtained if the resplacements of the momenta are 
linear and uniform. Among the important consequences of the equations are 
Liouville's theorem (on complete integrability), the Kozlov-Kolesnikov 
theorem (on integrability in integral manifolds) /3/, and the theorem on 
classes of equivalence of Hamiltonian systems. 

1. Initial data and relations. Consider s continuously differentiable functions 
of the coordinates and canonical momenta 

Pi = $i (Z, A), i = 1, . . ., 8 (1.Q 
which are functionally independent and uniquely solvable (in a certain region) in terms of 
the variables p, i.e., det(a*i/~Fj)~ 0, pj = qj (r, y) (the functions 'pj* naturally, are not defined 
everywhere), and generate an s-dimensional Lie algebra ((.,.) are Poisson brackets) 

using the operators 

($ig 9~) = Cijk$k i, j, k = 1, . , ., s (1.2) 

(1.3) 
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the commutation relations (1.2) can be written in the form 

X.~.=C!.$l =d.y 1 I 1, k %I k 
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(1.4) 

which can be proved by a direct check. 
It is well-known that the operators XY form a basis of a certain Lie algebra 

[Xi, X,1 = CijkXk (1.5) 

which can also be proved directly on the basis of definition (1.3). 
The operators cl.31 act in phase space (z,p). We will obtain their form in the space 

(5, Y). We will consider an arbitrary differentiable function F&p) = F(z, q fr, Y)) = F*(& Y). 
obviously 

Bearing in mind Eq.cl.4) we obtain 

XkF= Xk*F*, 
a a 

Xk*=Ei'(zT V) F+ CliYyq 

(Eik (&Y) = 5zi[pi=mj) 

In accordance with (1.5) we have the commutation relations 
[X$,XP =cijXk* 

2, The equations of motion. Consider the Hamiltonian system 

aH aH 

=+‘=api. Pi’=--, H = H (I, p) 

We have 

Hence, the equations of motion take the form 

2; =Y$**, Y; =- x,*zF, us* = cij (2,Y) afag, (2.2) 

When Eij = sil we revert to the Hamiltonian system (2.1). If the functions Ipi are linear 

and uniform in the moments yi= Ef'(z)p. 2, Eqs. (2.2) reducestothecanonfcal form ofthePoincar& 
Chetayev equations. System (2.2) largely preserves the featuresofthis classical form. We will 
briefly consider only the most important property of the shift operator. 

By grouping terms, as in /4/, it can be established that the operator of differentiation 
with respecttotime along the trajectories of the system (2.2) can take the form 

-gas= --$$-y,*+ Fx,*, j=1 ,...t a 
J 2 

in the case of its action on the function specified in the space (t,YJ I and 

s=-&~yJ*++,* 
J J 

12.4) 

in the case of action on the function specified in the extended space (t,r,y}. 
The system of operators Xj**Yj’ is independent and closed. It has a simple multiplication 

table: apart from (1.6) it contains the commutation relations 

[YI*. Yt*l = 0, k, 2 = 1, . . ., a w=J) 

W) 

We will prove these by using the obvious identities 

In fact 
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Relations (2.5) are proved. We will now prove (2.6). We have 

Ix,*, Ypl = - y,*s,j e + ixk*l,j - YI*c~jf!v) + 

Using (2.5) we obtain 

Further 

Hence 

- Yt*Qk as, - 
-!!____-y*~“.L- 

as k ,, 

I I ax, - --I$ (<I’ Y$ ) 

which is identical with relations (2.6). 
It follows from (1.8) and (2.6) that if the Hamiltonian H* and the functions Elk, . * *, 

g_, (k f: 1, . . .( s) do not depend on the variable zIlr the system of operators X1*,..., x,*, y1*, . . *1 yz-1 
is closed; then the system of equations 

X,.e = . . . = x,*o = Y,'o = . . . = Ys"_,e = 0 

is consistent. It follows from Eq.(2.4) for the shift operator that a unique solution o of 
this system is the integral of Eqs.(2.2). It is (in a certain sense) a non-linear analogue 
ofthecyclic integral corresponding to the coordinate 2,. 

3. The immediate consequences of the equations of motion. We will consider 
one of the important special cases when t~~(~,p)=e,, . . ..*~.(t,p)=c, are the first integrals of 
motion of system (2.1). 

We obtain from the second subsystem of Eqs. (2.2) 

x**fl* l,j,Cj = 0 (3.0 

The change in the coordinates zi will be described in this case by the first subsystem 
of Eqs.(2.2) 

aH* (5, 0) 
zi'=y**HI#j=cj = 4,i(zP ') 7 (3.2) 

I 

According to the commutation relations (1.8), the operators 

x,* = 5,” (r, c) gy- + qicv g- (3.3) 
* 

form a basis of a Lie algebra, to which there corresponds a local group of transformations 
G which act in the space {z,cf. We will show that the transformations of the group G transform 
Eqs.(3.2) into the equations 

Xi" = es' (3', c') aH* (a?, qlacj’ (3.4) 

TO do this consider the shift operator along the trajectories of system (3.2) 

a aa*(l, C) a 
$1 :=x + 5;) (2, c) 7 

I axi 

Taking relations (2.6) and (3.1) into account, we obtain 

rs1, x, * 1 = m, k -x, * * * 
at k 

Y, H -K - ) l,j*j. ax* - I Yj*H* * - Y,*Xk*H* -j- 
2 

at,” aE,” 
XTXj*H*e_ 3 

Y .*EP Ii a 

s =,‘azi= 0, k=l,...,s 
I 

i 2 
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lo. It follows from the form of the operators (3.3) that when cijk= O,thegroupGcommutes, 
and is a symmetry group of system (3.2). According to (1.2), J’i=Ci are the first integrals 
in the involution of Eqs.(2.2). The system of equations 

s,ei = 0, xx*oi = &i; i, k = 1, . ...8 (3.5) 

is consistent for each i = i,...,s. It defines the first s integrals of system (3.2) is quad- 
ratures. This is Liouville's theorem on the complete integrability of Hamiltonian systems. 
The quadratures are obtained from the formulas 

Here fo(') = &&at, fi(i) = aoi/dXj is the result of the solution of system (3.5) relative to the 
derivatives of oi (solvability occurs since det($*) #O). 

2O. If the group G does not commute, but is solvable (/5/, p.208), but the constants of 
integration cj are constrained by the conditions 

Cij'ck = 0 (3.6) 

then, according to the form of the opeators (3.3), the group G acts on the set (3.6) as a 
symmetry group of Eqs.(3.2). From the well-known Lie theorem, system (3.2) can be integrated 
in quadratures. This is the Kozlov-Kolesnikov theorem. 

3O. We will now consider the case when conditions (3.6) are not satisfied. Suppose RS 

is a Euclidean space of constants ci. There is a point c=(cl, . . . . CJE R8 corresponding to each 
fixed set of these constants. We will define the region Q as the set of all points of space 
{I,c}, in which the condition det(5ji)+0 is satisfied. Henceforth we will assume that at each 
point considered CE RS the variables I do not go outside the limits of Q. Then, the effec- 
tivenessofthe action in RS of the group G will depend on the rank of the matrix &=(cijyc,). 

Thus, if detX,#O (which is only possible for even s), the action of the group will be 
locally transitive. This means that however close the points csz A* and C'E R” are to one 
another we can specify a continuous (or even smooth) transformation gEG, which converts the 
corresponding systems (3.2) and (3.4) into one another. The phase portraits of these systems 
are therefore topologically (or smoothly) equivalent. 

We will now carry out a more detailed analysis. We will denote by I'@ the maximally wide 
region in which all the minors of the matrices X, of order p vanish. In the sequence P,,Pz, 

. . . . 8, I' RS each of the regions I;. is either contained in the nearest next one I',,cF,+, or 
coincides with it: P,,= P,,+r. For even s, generally speaking, PgC lid, and for odd sdet If, = 0 
and, consequently, f',= R'. In the chain of imbeddings which define the sequence rl, . . . . B’, 
the most typical branch has the form P,cF,,=...= r,,c r,,,,,,. Obviously in the region I',,+y 
the system of equations 

~$c.f3Qi8cj = 0, i = 1, . . ., s (3.7) 

has a general rank p and has Y- f functionally independent solutions 

% (c) = 11, . . ., Q-1 (4 = I,_, 13.8) 
which are invariants of the action of the group G in the space R'. For s=3, for example, there 
is one invariant (3.8) for each non-commuting group G. All these have been calculated in 
explicit form (/4/, p.52). 

At the intersection of the set (3.8) for fixed numerical values of I,,...,I,, with the 

region Fa+u \Fs the transformations of the group G act locally transitively. 
Hence, we have the following theorem. 

Theorem. For fairly close points ~,c'~Is+~\r~. corresponding to the same numerical 
values of the invariants 1,. . . ., I .+l, the phase portraits of system (3.2) and (3.4) are 
continuously (or smoothly) equivalent to the region 9. 

The case of Euler motion of a solid is a clear illustration of this theorem. 
We can take as the variables &,k, and gs the constant projections of the kinetic momentum 

on fixed axes. The equivalence of the phase portraits for the same value of k of the kinetic 
momentum is realized by a group of rotations. The presence of this group, in fact, is also 
usually employed when, in order to simplify the problem, a special choice of fixed axes is 
made from the origin itself: Y. = Us= O.t/.= k. 

1. 

2. 

3. 

__ -_ _-- 
The situation may not be quite so simple for other mechanical problems. 
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THE PROBLEM OF THE DIFFRACTION OF INTERNAL WAVES 
AT THE EDGE OF A SEMI-INFINITE FIuvI* 

V.V. vARLAMov 

Inacontinuation oftheresearch described in /l-4/ on the diffraction of 
waves, described by the Klein-Gordon equation, the diffraction of external 
waves at the boundary of a semi-infinity film situated on the surface of 
a stratified liquid is considered. Among the many papers devoted to the 
scattering of acoustic waves by rectilinear objects we mention /5-7/. 
The need to take into account the properties of the surface covering the 
liquid led to a study of the boundary vaiue problem for the Helmholtz 
equation with boundary conditions containing higher-order derivatives 
than the equation itself. Consideration of the surface tension of a semi- 
infinite film leads to a similar situation. However, in this case the 
propagation of the waves is described by an equation of the hyperbolic 
and not the elliptic type. 

1. To study two-dimensional motions of an incompatible ideal liquid we will introduce 
a Cartesian system of coordinates (~,0,a). Consider an infinite plane layer Q=((z,z):-CO<S< 
Wr --h<z<O) of a stratified liquid, bounded from below (for I= --h) by a solid bottom. 
Above (where z=O) the boundary of the liquid consists of two parts; for s<O the surface 
of the liquid is free, and for z>O the liquid is covered by a thin film having a surface 
tension 0. The density of the liquid in the unperturbed state has the distribution pO(z)= 
poe-afiz, b > 0. 

The small oscillations of the liquid are described by the.following system of equations 
/8/: 

PO Wvlat + VP + s,p,g = 0 
a/a@, -I- (ez, v)p,' (2) = 0, div V = 0 v.1) 

where V = (u,, up) is the vector of the velocity of the liquid particles, P1 is the change in the 
density due to motions of the liquid, p is the dynamic pressure, e, is the unit vector of the 
02 axis, and g is the acceleration due to gravity. 

If we introduce the stream function Y using the formulas u~=Y,,Q= -Y, and then the 
function Y= Yye+, the integration of system (1.1) can be reduced to solving the equation 

a*/&" [A,u - tW + J&+ = 0 W) 

where A, is the Laplace operator with respect to z and z and o. a- Zgg is the square of the - 
Brent-Viaisial frequency+ 

For steady-state wave motion, which depends on time as rio', and o<o,, Eq.(1.2) can 
be written as the Klein-Gordon equation 

The condition for the solid bottom to be impenetrable and the boundary condition on the 
free surface /2/ have the form 

11 = 0, r--h. ZERO (1.4) 
Uz + BU + (g/o%,, = 0, I = 0, z < 0 (1.5) 
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